A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces
نویسندگان
چکیده
A facile in situ and UV printing process was demonstrated to create self-cleaning synthetic replica of natural petals and leaves. The process relied on the spontaneous migration of a fluorinated acrylate surfactant (PFUA) within a low-shrinkage acrylated hyperbranched polymer (HBP) and its chemical immobilization at the polymer-air interface. Dilute concentrations of 1 wt. % PFUA saturated the polymer-air interface within 30 min, leading to a ten-fold increase of fluorine concentration at the surface compared with the initial bulk concentration and a water contact angle (WCA) of 108°. A 200 ms flash of UV light was used to chemically crosslink the PFUA at the HBP surface prior to UV printing with a polydimethylsiloxane (PDMS) negative template of red and yellow rose petals and lotus leaves. This flash immobilization hindered the reverse migration of PFUA within the bulk HBP upon contacting the PDMS template, and enabled to produce texturized surfaces with WCA well above 108°. The synthetic red rose petal was hydrophobic (WCA of 125°) and exhibited the adhesive petal effect. It was not superhydrophobic due to insufficient concentration of fluorine at its surface, a result of the very large increase of the surface of the printed texture. The synthetic yellow rose petal was quasi-superhydrophobic (WCA of 143°, roll-off angle of 10°) and its self-cleaning ability was not good also due to lack of fluorine. The synthetic lotus leaf did not accurately replicate the intricate nanotubular crystal structures of the plant. In spite of this, the fluorine concentration at the surface was high enough and the leaf was superhydrophobic (WCA of 151°, roll-off angle below 5°) and also featured self-cleaning properties.
منابع مشابه
Development and Validation of RP-HPLC-UV Method for Determination of Diclofenac Sodium Residues on Surfaces for Cleaning Validation
In recent years, cleaning validation has achieved a position of increasing in the pharmaceutical industry. It provides assurance to the cleaning procedure that ensures equipment is consistently cleaned from the product, detergent and microbial residues to an acceptable level to avoid cross-contamination and adulteration of drug product with other active ingredients. The aim of this study was to...
متن کاملBioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties.
This paper presents a facile method to fabricate bioinspired polyethylene terephthalate (PET) nanocone arrays via colloidal lithography. The aspect ratio (AR) of the nanocones can be finely modulated ranging from 1 to 6 by regulating the etching time. The samples with the AR value of 6 can present underwater superoleophobicity with the underwater oil contact angle (OCA) of 171.8°. The as-prepar...
متن کاملApplication of a New Self-Cleaning Filter for Colored Wastewaters Treatment Using Laccase Enzyme Immobilized on Activated CARBON powder and fiber
The objective of this work is investigation of the adsorption and decomposition of Reactive Blue 19 from industrial wastewaters using laccase enzyme immobilized on activated carbon powder and fiber as adsorbent. Time, pH, temperature, stirring rate, the amount of the adsorbent, dye initial concentration, solution flow rate in the column and column height were studied as key operating parame...
متن کاملLaser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder
In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) ...
متن کاملDetermination of Residual Ceftazidime in Pharmaceutical Product line: A Cleaning Validation Study by HPLC
The manufacturing equipment in pharmaceutical industry, could be used in multiple and sharedproduction lines, therefore there is the possibility for the products components and active ingredients tointermix and pollute one another. In this purpose the cleaning methods are used, to reduce the residueslevels from the machinery surfaces and decrease the residues to acceptable level but these metho...
متن کامل